Question 1:
If \(y=\sin^{-1}x,\) then \((1-x^{2})\frac{d^{2}y}{dx^{2}}\) is equal to:
Question 2:
If \(y=a\cos(\log x)+b\sin(\log x)\), then \(x^{2}y_{2}+xy_{1}\) is:
Question 3:
If \(y=\log(\sqrt{x}+\frac{1}{\sqrt{x}})^{2}\), then show that \(x(x+1)^{2}y_{2}+(x+1)^{2}y_{1}=2.\)
Question 4:
If \(x=a~sin^{3}\theta\), \(y=b~cos^{3}\theta\) then find \(\frac{d^{2}y}{dx^{2}}\) at \(\theta=\frac{\pi}{4}\)
Question 5:
If \(x = a \left( \cos \theta + \log \tan \frac{\theta}{2} \right)\) and \(y = \sin \theta\), then find \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{4}\).