Class 12 Math: Derivative

Class 12 Math

ID: 352 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 1: If \(f(x)=-2x^{8}\) then the correct statement is :
  • A. \(f^{\prime}(\frac{1}{2})=f^{\prime}(-\frac{1}{2})\)
  • B. \(f^{\prime}(\frac{1}{2})=-f^{\prime}(-\frac{1}{2})\)
  • C. \(-f^{\prime}(\frac{1}{2})=f(-\frac{1}{2})\)
  • D. \(f(\frac{1}{2})=-f(-\frac{1}{2})\)
ID: 482 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 2: The derivative of \(\sin(x^{2})\) w.r.t. x, at \(x=\sqrt{\pi}\) is :
  • A. 1
  • B. -1
  • C. \(-2\sqrt{\pi}\)
  • D. \(2\sqrt{\pi}\)
ID: 500 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 3: The derivative of \(\tan^{-1}(x^{2})\) w.r.t. x is :
  • A. \(\frac{x}{1+x^{4}}\)
  • B. \(\frac{2x}{1+x^{4}}\)
  • C. \(-\frac{2x}{1+x^{4}}\)
  • D. \(\frac{1}{1+x^{4}}\)
ID: 519 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 4: The derivative of \(2^{x}\) w.r.t. \(3^{x}\) is:
  • A. \((\frac{3}{2})^{x}\frac{log~2}{log~3}\)
  • B. \((\frac{2}{3})^{x}\frac{log~3}{log~2}\)
  • C. \((\frac{2}{3})^{x}\frac{log~2}{log~3}\)
  • D. \((\frac{3}{2})^{x}\frac{log~3}{log~2}\)
ID: 529 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 5: Derivative of \(e^{2x}\) with respect to \(e^{x}\), is:
  • A. \(e^{x}\)
  • B. \(2e^{x}\)
  • C. \(2e^{2x}\)
  • D. \(2e^{3x}\)
ID: 548 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 6: If \(xe^{y}=1\), then the value of \(\frac{dy}{dx}\) at \(x=1\) is :
  • A. -1
  • B. 1
  • C. -e
  • D. \(-\frac{1}{e}\)
ID: 549 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 7: Derivative of \(e^{\sin^{2}x}\) with respect to cos x is:
  • A. \(sin~x~e^{sin^{2}x}\)
  • B. \(cos~x~e^{sin^{2}x}\)
  • C. \(-2~cos~x~e^{sin^{2}x}\)
  • D. \(-2~sin^{2}x~cos~x~e^{sin^{2}x}\)
ID: 193 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 8: Differentiate \(2^{\cos^2 x}\) w.r.t \(\cos^2 x\)
ID: 194 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 9: If \(\tan^{-1} \left(x^2 + y^2\right) = a^2\), then find \(\frac{dy}{dx}\)
ID: 264 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 10: If \(x=e^{\frac{x}{y}}\), then prove that \(\frac{dy}{dx}=\frac{x-y}{x~\log x}\).
ID: 388 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 11: Differentiate \(\frac{\sin x}{\sqrt{\cos x}}\) with respect to \(x\).
ID: 389 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 12: If \(y=5\cos x-3\sin x\), prove that \(\frac{d^{2}y}{dx^{2}}+y=0.\)
ID: 426 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 13: Differentiate \(\sqrt{e^{\sqrt{2x}}}\) with respect to \(e^{\sqrt{2x}}\) for \(x>0.\)
ID: 427 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 14: If \((x)^{y}=(y)^{x}\), then find \(\frac{dy}{dx}\).
ID: 449 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 15: Differentiate \((\frac{5^{x}}{x^{5}})\) with respect to x.
ID: 450 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 16: If \(-2x^{2}-5xy+y^{3}=76\), then find \(\frac{dy}{dx}\).
ID: 566 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2024
Question 17: If \(f(x)=|\tan~2x|\), then find the value of \(f^{\prime}(x)\) at \(x=\frac{\pi}{3}\)
ID: 567 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2024
Question 18: If \(x=e^{x/y}\), prove that \(\frac{dy}{dx}=\frac{\log~x-1}{(\log~x)^{2}}\)
ID: 568 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2024
Question 19: If \(y=\cos^{3}(\sec^{2}2t)\), find \(\frac{dy}{dt}\) .
ID: 577 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2024
Question 20: If \(x^{y}=e^{x-y},\) prove that \(\frac{dy}{dx}=\frac{\log~x}{(1+\log~x)^{2}}.\)
ID: 578 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2024
Question 21: If \(y=\operatorname{cosec}(\cot^{-1}x)\), then prove that \(\sqrt{1+x^{2}}\frac{dy}{dx}-x=0\)
ID: 579 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2024
Question 22: If \(y=\sqrt{\tan\sqrt{x}}\), prove that \(\sqrt{x}\frac{dy}{dx}=\frac{1+y^{4}}{4y}\).
ID: 287 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 23: If \(x\sqrt{1+y}+y\sqrt{1+x}=0,\) with \( -1< x < 1,\), \(x\ne y,\) then prove that \(\frac{dy}{dx}=\frac{-1}{(1+x)^{2}}\).
ID: 433 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 24: Differentiate \(y=\sin^{-1}(3x-4x^{3})\) w.r.t. x, if \(x\in[-\frac{1}{2},\frac{1}{2}].\)
ID: 434 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 25: Differentiate \(y=\cos^{-1}(\frac{1-x^{2}}{1+x^{2}})\) with respect to x, when \(x\in(0,1).\)
ID: 458 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 26: Differentiate \(y=\sqrt{\log\{\sin(\frac{x^{3}}{3}-1)\}}\) with respect to x.
ID: 600 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 27: Find \(\frac{dy}{dx}\) , if \((cos~x)^{y}=(cos~y)^{x}\)
ID: 607 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 28: If \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y),\) prove that \(\frac{dy}{dx}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}.\)
ID: 608 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 29: If \(x~cos(p+y)+cos~p~sin(p+y)=0\), prove that \(cos~p\frac{dy}{dx}=-cos^{2}(p+y),\) where p is a constant.
ID: 609 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 30: If \(x=e^{\cos~3t}\) and \(y=e^{\sin~3t}\), prove that \(\frac{dy}{dx}=-\frac{y~\log~x}{x~\log~y}\)
ID: 621 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 31: If \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)\), prove that \(\frac{dy}{dx}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}.\)
ID: 622 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 32: If \(y=(\tan x)^{x},\) then find \(\frac{dy}{dx}\).
ID: 623 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 33: Show that: \(\frac{d}{dx}(|x|)=\frac{x}{|x|},x\ne0\)
ID: 632 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2024
Question 34: Given that \(y=(sin~x)^{x}\cdot x^{sin~x}+a^{x},\) find \(\frac{dy}{dx}\)
ID: 209 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 35: If \(\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)\), then prove that \(\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}\).
ID: 421 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 36: For a positive constant 'a', differentiate \(a^{(t+\frac{1}{t})}\) with respect to \(t+\frac{1}{t}\) where t is a non-zero real number.
ID: 422 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 37: Find \(\frac{dy}{dx}\) if \(y^{x}+x^{y}+x^{x}=a^{b}\) where a and b are constants.