Class 12 Math: Matrices And Determinants

Class 12 Math

ID: 218 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 1: If \[ A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \] then \(A^{-1}\) is
  • A. \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
  • B. \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
  • C. \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
  • D. \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
ID: 223 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 2: A is a square matrix of order 2 such that det(A)=4 , then det(4adjA) is
  • A. 16
  • B. 64
  • C. 256
  • D. 512
ID: 227 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 3: Let \[ A = \begin{pmatrix} 1 & -2 & -1 \\ 0 & 4 & -1 \\ -3 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -2 \\ -5 \\ -7 \end{pmatrix}, \quad C = \begin{pmatrix} 9 & 8 & 7 \end{pmatrix}, \] which of the following is defined?
  • A. Only AB
  • B. Only AC
  • C. Only BA
  • D. All AB, AC and BA
ID: 232 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 4: If \[ A = \begin{pmatrix} 7 & 0 & x \\ 0 & 7 & 0 \\ 0 & 0 & y \end{pmatrix} \] is a scalar matrix, then \(y^x\) is equal to
  • A. \(0\)
  • B. \(1\)
  • C. \(7\)
  • D. \(\pm 7\)
ID: 234 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 5: If \(A\) and \(B\) are invertible matrices, then which of the following is \underline{not correct}?
  • A. \((A + B)^{-1} = B^{-1} + A^{-1}\)
  • B. \((AB)^{-1} = B^{-1} A^{-1}\)
  • C. \(\text{adj}(A) = |A| A^{-1}\)
  • D. \(|A^{-1}| = |A|^{-1}\)
ID: 243 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 6: If \(A=\begin{bmatrix}1&12&4y\\ 6x&5&2x\\ 8x&4&6\end{bmatrix}\) is a symmetric matrix, then \((2x+y)\) is
  • A. \(-8\)
  • B. 0
  • C. 6
  • D. 8
ID: 247 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 7: Which of the following can be both a symmetric and skew-symmetric matrix ?
  • A. Unit Matrix
  • B. Diagonal Matrix
  • C. Null Matrix
  • D. Row Matrix
ID: 249 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 8: Four friends Abhay, Bina, Chhaya and Devesh were asked to simplify \(4~AB+3(AB+BA)-4~BA,\) where A and B are both matrices of order \(2\times2\).

It is known that \(A\ne B\ne I\) and \(A^{-1}\ne B\).

Their answers are given as:

Abhay: \(6 AB\),

Bina : \(7 AB-BA\),

Chhaya: \(8 AB\),

Devesh: \(7 BA - AB\).

Who answered it correctly?

  • A. Abhay
  • B. Bina
  • C. Chhaya
  • D. Devesh
ID: 256 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 9: If A and B are square matrices of order m such that \(A^{2}-B^{2}=(A-B)(A+B),\) then which of the following is always correct?
  • A. \(A=B\)
  • B. \(AB=BA\)
  • C. \(A=0\) or \(B=0\)
  • D. \(A=I\) or \(B=I\)
ID: 296 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 10: If M and N are square matrices of order 3 such that det \((M)=m\) and \(MN=mI,\) then det (N) is equal to:
  • A. -1
  • B. 1
  • C. \(-m^{2}\)
  • D. \(m^{2}\)
ID: 310 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 11: If \(A=\begin{bmatrix}1&2&3\\ -4&3&7\end{bmatrix}\) and \(B=\begin{bmatrix}4&3\\ -1&2\\ 0&5\end{bmatrix},\) then the correct statement is:
  • A. Only AB is defined.
  • B. Only BA is defined.
  • C. AB and BA, both are defined.
  • D. AB and BA, both are not defined.
ID: 311 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 12: If \(\begin{vmatrix}2x&5\\ 12&x\end{vmatrix}=\begin{vmatrix}6&-5\\ 4&3\end{vmatrix}\) then the value of x is:
  • A. 3
  • B. 7
  • C. \(\pm7\)
  • D. \(\pm3\)
ID: 313 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 13: If \(A=[a_{ij}]\) is a \(3\times3\) diagonal matrix such that \(a_{11}=1\), \(a_{22}=5\) and \(a_{33}=-2\), then \(|A|\) is:
  • A. 0
  • B. -10
  • C. 10
  • D. 1
ID: 315 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 14: If \(\begin{bmatrix}4+x&x-1\\ -2&3\end{bmatrix}\) is a singular matrix, then the value of x is:
  • A. 0
  • B. 1
  • C. -2
  • D. 4
ID: 326 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 15: Let both \(AB^{\prime}\) and \(B^{\prime}A\) be defined for matrices A and B. If order of A is \(n\times m\), then the order of B is:
  • A. \(n\times n\)
  • B. \(n\times m\)
  • C. \(m\times m\)
  • D. \(m\times n\)
ID: 327 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 16: If \(A=\begin{bmatrix}-1&0&0\\ 0&3&0\\ 0&0&5\end{bmatrix},\) then A is a/an:
  • A. scalar matrix
  • B. identity matrix
  • C. symmetric matrix
  • D. skew-symmetric matrix
ID: 329 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 17: Sum of two skew-symmetric matrices of same order is always a/an:
  • A. skew-symmetric matrix
  • B. symmetric matrix
  • C. null matrix
  • D. identity matrix
ID: 346 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 18: What is the total number of possible matrices of order \(3\times3\) with each entry as \(\sqrt{2}\) or \(\sqrt{3}\)?
  • A. 9
  • B. 512
  • C. 615
  • D. 64
ID: 347 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 19: The matrix \(A=\begin{bmatrix}\sqrt{3}&0&0\\ 0&\sqrt{2}&0\\ 0&0&\sqrt{5}\end{bmatrix}\) is a/an:
  • A. scalar matrix
  • B. identity matrix
  • C. null matrix
  • D. symmetric matrix
ID: 348 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 20: If A and B are two square matrices each of order 3 with \(|A|=3\) and \(|B|=5\), then \(|2AB|\) is:
  • A. 30
  • B. 120
  • C. 15
  • D. 225
ID: 349 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 21: Let A be a square matrix of order 3. If \(|A|=5\), then \(|\operatorname{adj} A|\) is:
  • A. 5
  • B. 125
  • C. 25
  • D. -5
ID: 350 Type: Mcq Source: AISSCE(Board Exam) Year: 2025
Question 22: If \(\begin{bmatrix}2x-1&3x\\ 0&y^{2}-1\end{bmatrix}=\begin{bmatrix}x+3&12\\ 0&35\end{bmatrix},\) then the value of \((x-y)\) is :
  • A. 2 or 10
  • B. 2 or 10
  • C. 2 or - 10
  • D. -2 or - 10
ID: 471 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 23: If a matrix has 36 elements, the number of possible orders it can have, is:
  • A. 13
  • B. 3
  • C. 5
  • D. 9
ID: 474 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 24: If \(\begin{bmatrix}x+y&2\\ 5&xy\end{bmatrix}=\begin{bmatrix}6&2\\ 5&8\end{bmatrix},\) then the value of \((\frac{24}{x}+\frac{24}{y})\) is:
  • A. 7
  • B. 6
  • C. 8
  • D. 18
ID: 481 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 25: \(\begin{vmatrix}x+1&x-1\\ x^{2}+x+1&x^{2}-x+1\end{vmatrix}\) is equal to:
  • A. \(2x^{3}\)
  • B. 2
  • C. 0
  • D. \(2x^{3}-2\)
ID: 487 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 26: If A and B are two non-zero square matrices of same order such that \((A+B)^{2}=A^{2}+B^{2}\) then :
  • A. \(AB=O\)
  • B. \(AB=-BA\)
  • C. \(BA=O\)
  • D. \(AB=BA\)
ID: 488 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 27: If the sum of all the elements of a \(3\times3\) scalar matrix is 9, then the product of all its elements is:
  • A. 0
  • B. 9
  • C. 27
  • D. 729
ID: 490 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 28: If \(\begin{vmatrix}-a&b&c\\ a&-b&c\\ a&b&-c\end{vmatrix}= kabc,\) then the value of k is:
  • A. 0
  • B. 1
  • C. 2
  • D. 4
ID: 499 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 29: If \(A=[a_{ij}]\) be a \(3\times3\) matrix, where \(a_{ij}=i-3j\), then which of the following is false ?
  • A. \(a_{11}\lt0\)
  • B. \(a_{12}+a_{21}=-6\)
  • C. \(a_{13}\gt a_{31}\)
  • D. \(a_{31}=0\)
ID: 504 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 30: If \(F(x)=\begin{bmatrix}\cos~x&-\sin~x&0\\ \sin~x&\cos~x&0\\ 0&0&1\end{bmatrix}\) and \([F(x)]^{2}=F(kx)\), then the value of k is :
  • A. 1
  • B. 2
  • C. 0
  • D. -2
ID: 506 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 31: If \(A=[a_{ij}]\) is an identity matrix, then which of the following is true ?
  • A. \(a_{ij}=\begin{cases}0,&if~i=j\\ 1,&if~i\ne j\end{cases}\)
  • B. \(a_{ij}=1,\forall i,j\)
  • C. \(a_{ij}=0,\forall i,j\)
  • D. \(a_{ij}=\begin{cases}0,&if~i\ne j\\ 1,&if~i=j\end{cases}\)
ID: 508 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 32: Let \(A=\begin{bmatrix}a&b\\ c&d\end{bmatrix}\) be a square matrix such that adj \(A=A\) Then, \((a+b+c+d)\) is equal to :
  • A. 2a
  • B. 2b
  • C. 2c
  • D. 0
ID: 517 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 33: If A and B are two skew symmetric matrices, then \((AB+BA)\) is :
  • A. a skew symmetric matrix
  • B. a symmetric matrix
  • C. a null matrix
  • D. an identity matrix
ID: 518 Type: Mcq Year: 2024
Question 34: If \(\begin{vmatrix}1&3&1\\ k&0&1\\ 0&0&1\end{vmatrix}=\pm6,\) then the value of k is:
  • A. 2
  • B. -2
  • C. \(\pm2\)
  • D. \(\mp2\)
ID: 523 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 35: If \(A=\begin{bmatrix}2&0&0\\ 0&3&0\\ 0&0&5\end{bmatrix},\) then \(A^{-1}\) is:
  • A. \([\begin{matrix}\frac{1}{2}&0&0\\ 0&3&0\\ 0&0&\frac{1}{5}\end{matrix}]\)
  • B. \(30[\begin{matrix}\frac{1}{2}&0&0\\ 0&\frac{1}{3}&0\\ 0&0&\frac{1}{5}\end{matrix}]\)
  • C. \(\frac{1}{30}[\begin{matrix}2&0&0\\ 0&3&0\\ 0&0&5\end{matrix}]\)
  • D. \(\frac{1}{30}[\begin{matrix}\frac{1}{2}&0&0\\ 0&\frac{1}{3}&0\\ 0&0&\frac{1}{5}\end{matrix}]\)
ID: 524 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 36: \(If\begin{bmatrix}a&c&0\\ b&d&0\\ 0&0&5\end{bmatrix}\) is a scalar matrix, then the value of \(a+2b+3c+4d\) is:
  • A. 0
  • B. 5
  • C. 10
  • D. 25
ID: 525 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 37: Given that \(A^{-1}=\frac{1}{7}\begin{bmatrix}2&1\\ -3&2\end{bmatrix}\) matrix A is
  • A. \(7[\begin{matrix}2&-1\\ 3&2\end{matrix}]\)
  • B. \([\begin{matrix}2&-1\\ 3&2\end{matrix}]\)
  • C. \(\frac{1}{7}[\begin{matrix}2&-1\\ 3&2\end{matrix}]\)
  • D. \(\frac{1}{49}[\begin{matrix}2&-1\\ 3&2\end{matrix}]\)
ID: 526 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 38: \(If~A=[\begin{matrix}2&1\\ -4&-2\end{matrix}].\) then the value of \(I-A+A^{2}-A^{3}+...is\): (1)
  • A. \([\begin{matrix}-1&-1\\ 4&3\end{matrix}]\)
  • B. \([\begin{matrix}3&1\\ -4&-1\end{matrix}]\)
  • C. \([\begin{matrix}0&0\\ 0&0\end{matrix}]\)
  • D. \([\begin{matrix}1&0\\ 0&1\end{matrix}]\)
ID: 527 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 39: \(If~A=\begin{bmatrix}-2&0&0\\ 1&2&3\\ 5&1&-1\end{bmatrix},\) then the value of | A (adj. A) | is:
  • A. 100 I
  • B. 10 I
  • C. 10
  • D. 1000
ID: 528 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 40: Given that \([\begin{matrix}1&x\end{matrix}]\begin{bmatrix}4&0\\ -2&0\end{bmatrix}=0,\) the value of x is:
  • A. -4
  • B. -2
  • C. 2
  • D. 4
ID: 543 Type: Mcq Year: 2024
Question 41: If \(A=\begin{bmatrix}a&c&-1\\ b&0&5\\ 1&-5&0\end{bmatrix}\) is a skew-symmetric matrix, then the value of \(2a-(b+c)\) is:
  • A. 0
  • B. 1
  • C. -10
  • D. 10
ID: 544 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 42: If A is a square matrix of order 3 such that the value of \(|adj\cdot A|=8,\) then the value of \(|A^{T}|\) is: (1)
  • A. \(\sqrt{2}\)
  • B. \(-\sqrt{2}\)
  • C. 8
  • D. \(2\sqrt{2}\)
ID: 545 Type: Mcq Year: 2024
Question 43: If inverse of matrix \(\begin{bmatrix}1&3&3\\ 1&\lambda&3\\ 1&3&4\end{bmatrix}\) is the matrix \(\begin{bmatrix}7&-3&-3\\ -1&1&0\\ -1&0&1\end{bmatrix},\) then value of \(\lambda\) is:
  • A. -4
  • B. 1
  • C. 3
  • D. 4
ID: 546 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 44: If \(\begin{bmatrix}x&2&0\end{bmatrix}\begin{bmatrix}5\\ -1\\ x\end{bmatrix}=\begin{bmatrix}3&1\end{bmatrix}\begin{bmatrix}-2\\ x\end{bmatrix},\) then value of x is:
  • A. -1
  • B. 0
  • C. 1
  • D. 2
ID: 547 Type: Mcq Source: AISSCE(Board Exam) Year: 2024
Question 45: Find the matrix \(A^{2}\), where \(A=[a_{ij}]\) is a \(2\times2\) matrix whose elements are given by \(a_{ij}=\) maximum (i, j) - minimum (i, j):
  • A. \([\begin{matrix}0&0\\ 0&0\end{matrix}]\)
  • B. \([\begin{matrix}1&0\\ 0&1\end{matrix}]\)
  • C. \([\begin{matrix}0&1\\ 1&0\end{matrix}]\)
  • D. \([\begin{matrix}1&1\\ 1&1\end{matrix}]\)
ID: 258 Type: Assertion-reason Source: AISSCE(Board Exam) Year: 2025
Question 46:

Assertion (A): \(A=\) diag [3 5 2] is a scalar matrix of order \(3\times3.\)

Reason (R) : If a diagonal matrix has all non-zero elements equal, it is known as a scalar matrix.

ID: 362 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 47: Let A and B be two square matrices of order 3 such that det (A) \(=3\) and det (B) \(=-4\). Find the value of det (-6AB).
ID: 363 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 48: Let A and B be two square matrices of order 3 such that det (A) \(=3\) and det (B) \(=-4\). Find the value of det (-6AB).
ID: 448 Type: Very short (VSA) Source: AISSCE(Board Exam) Year: 2025
Question 49: If \(A=\begin{bmatrix}2&3\\ -1&2\end{bmatrix}\), then show that \(A^{2}-4A+7I=0\).
ID: 432 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 50: Let \(A=\begin{bmatrix}1\\ 4\\ -2\end{bmatrix}\) and \(C=\begin{bmatrix}3&4&2\\ 12&16&8\\ -6&-8&-4\end{bmatrix}\). Find the matrix B if \(AB=C\).
ID: 456 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 51: Let \(2x+5y-1=0\) and \(3x+2y-7=0\) represent the equations of two lines on which the ants are moving on the ground. Using matrix method, find a point common to the paths of the ants.
ID: 457 Type: Short (SA) Source: AISSCE(Board Exam) Year: 2025
Question 52: A shopkeeper sells 50 Chemistry, 60 Physics and 35 Maths books on day I and sells 40 Chemistry, 45 Physics and 50 Maths books on day II. If the selling price for each such subject book is ?150 (Chemistry), ? 175 (Physics) and ? 180 (Maths), then find his total sale in two days, using matrix method. If cost price of all the books together is 35,000, what profit did he earn after the sale of two days?
ID: 274 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 53: Given \(A=\begin{bmatrix}-4&4&4\\ -7&1&3\\ 5&-3&-1\end{bmatrix}\) and \(B=\begin{bmatrix}1&-1&1\\ 1&-2&-2\\ 2&1&3\end{bmatrix},\) find \(AB\). Hence, solve the system of linear equations: \(x-y+z=4\), \(x-2y-2z=9\), \(2x+y+3z=1\).
ID: 283 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 54: If \(A=\begin{bmatrix}1&2&0\\ -2&-1&-2\\ 0&-1&1\end{bmatrix},\) then find \(A^{-1}\). Hence, solve the system of linear equations: \(x-2y=10\), \(2x-y-z=8\), \(-2y+z=7\).
ID: 379 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 55: If A is a \(3\times3\) invertible matrix, show that for any scalar \(k\ne0.\), \((kA)^{-1}=\frac{1}{k}A^{-1}.\) Hence calculate \((3A)^{-1}\) where \(A=\begin{bmatrix}2&-1&1\\ -1&2&-1\\ 1&-1&2\end{bmatrix}.\)
ID: 420 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2025
Question 56: A furniture workshop produces three types of furniture chairs, tables and beds each day. On a particular day the total number of furniture pieces produced is 45. It was also found that production of beds exceeds that of chairs by 8, while the total production of beds and chairs together is twice the production of tables. Determine the units produced of each type of furniture, using **matrix method**.
ID: 644 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 57: If \(A=\begin{bmatrix}1&2&-3\\ 2&0&-3\\ 1&2&0\end{bmatrix},\) then find \(A^{-1}\) and hence solve the following system of equations: \(x+2y-3z=1\), \(2x-3z=2\), \(x+2y=3\).
ID: 645 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 58: If \(A=\begin{bmatrix}1&-2&0\\ 2&-1&-1\\ 0&-2&1\end{bmatrix},\) find \(A^{-1}\) and use it to solve the following system of equations: \(x-2y=10\), \(2x-y-z=8\), \(-2y+z=7\).
ID: 650 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 59: Solve the following system of equations, using matrices: \(\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4\), \(\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1\), \(\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2\) where x, y, \(z\ne0\)
ID: 654 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 60: Find the product of the matrices \(\begin{bmatrix}1&2&-3\\ 2&3&2\\ 3&-3&-4\end{bmatrix}\begin{bmatrix}-6&17&13\\ 14&5&-8\\ -15&9&-1\end{bmatrix}\) and hence solve the system of linear equations: \(x+2y-3z=-4\), \(2x+3y+2z=2\), \(3x-3y-4z=11\).
ID: 656 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 61: If \(A=\begin{bmatrix}1&\cot~x\\ -\cot~x&1\end{bmatrix}\) show that \(A^{\prime}A^{-1}=\begin{bmatrix}-\cos~2x&-\sin~2x\\ \sin~2x&-\cos~2x\end{bmatrix}\)
ID: 657 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 62: If \(A=\begin{bmatrix}-1&a&2\\ 1&2&x\\ 3&1&1\end{bmatrix}\) and \(A^{-1}=\begin{bmatrix}1&-1&1\\ -8&7&-5\\ b&y&3\end{bmatrix},\) find the value of \((a+x)-(b+y)\).
ID: 666 Type: Long (LA) Source: AISSCE(Board Exam) Year: 2024
Question 63: If \(A=[\begin{matrix}2&1&-3\\ 3&2&1\\ 1&2&-1\end{matrix}],\) find \(A^{-1}\) and hence solve the following system of equations: \(2x+y-3z=13\), \(3x+2y+z=4\), \(x+2y-z=8\).