🤖 AI Generated Solution:
**Solution:**
**1. Given Matrices:**
We are given the matrices:
$$A=\begin{bmatrix}1\\ 4\\ -2\end{bmatrix} \quad \text{and} \quad C=\begin{bmatrix}3&4&2\\ 12&16&8\\ -6&-8&-4\end{bmatrix}$$
We are also given the matrix equation \(AB=C\).
**2. Determine the Dimensions of Matrix B:**
Let the dimension of matrix B be \(m \times n\).
Matrix A has dimensions \(3 \times 1\).
Matrix C has dimensions \(3 \times 3\).
For the product \(AB\) to be defined, the number of columns in A must be equal to the number of rows in B.
Number of columns in A = 1.
Therefore, the number of rows in B, \(m\), must be 1.
The dimension of the product matrix \(AB\) will be (rows of A) \(\times\) (columns of B).
Dimension of \(AB = 3 \times n\).
Since \(AB=C\), the dimension of \(AB\) must be equal to the dimension of C.
So, \(3 \times n = 3 \times 3\).
This implies \(n=3\).
Thus, matrix B must be a \(1 \times 3\) matrix.
**3. Represent Matrix B:**
Let matrix B be represented as:
$$B=\begin{bmatrix}b_1&b_2&b_3\end{bmatrix}$$
**4. Perform the Matrix Multiplication \(AB\):**
Now, we multiply A by B:
$$AB = \begin{bmatrix}1\\ 4\\ -2\end{bmatrix} \begin{bmatrix}b_1&b_2&b_3\end{bmatrix}$$
$$AB = \begin{bmatrix}1 \cdot b_1 & 1 \cdot b_2 & 1 \cdot b_3 \\ 4 \cdot b_1 & 4 \cdot b_2 & 4 \cdot b_3 \\ -2 \cdot b_1 & -2 \cdot b_2 & -2 \cdot b_3\end{bmatrix}$$
$$AB = \begin{bmatrix}b_1 & b_2 & b_3 \\ 4b_1 & 4b_2 & 4b_3 \\ -2b_1 & -2b_2 & -2b_3\end{bmatrix}$$
**5. Equate \(AB\) with \(C\):**
We are given \(AB=C\), so we equate the product with the given matrix C:
$$\begin{bmatrix}b_1 & b_2 & b_3 \\ 4b_1 & 4b_2 & 4b_3 \\ -2b_1 & -2b_2 & -2b_3\end{bmatrix} = \begin{bmatrix}3&4&2\\ 12&16&8\\ -6&-8&-4\end{bmatrix}$$
**6. Solve for the Elements of B:**
By comparing the corresponding elements of the two matrices, we get a system of equations:
From the first row:
$$b_1 = 3$$
$$b_2 = 4$$
$$b_3 = 2$$
Let's verify these values with the other rows to ensure consistency:
From the second row:
$$4b_1 = 12 \implies 4(3) = 12 \implies 12 = 12 \quad \text{(Consistent)}$$
$$4b_2 = 16 \implies 4(4) = 16 \implies 16 = 16 \quad \text{(Consistent)}$$
$$4b_3 = 8 \implies 4(2) = 8 \implies 8 = 8 \quad \text{(Consistent)}$$
From the third row:
$$-2b_1 = -6 \implies -2(3) = -6 \implies -6 = -6 \quad \text{(Consistent)}$$
$$-2b_2 = -8 \implies -2(4) = -8 \implies -8 = -8 \quad \text{(Consistent)}$$
$$-2b_3 = -4 \implies -2(2) = -4 \implies -4 = -4 \quad \text{(Consistent)}$$
All equations are consistent with the values \(b_1=3\), \(b_2=4\), and \(b_3=2\).
**7. Final Answer:**
Therefore, the matrix B is:
$$B=\begin{bmatrix}3&4&2\end{bmatrix}$$
The final answer is $\boxed{\begin{bmatrix}3&4&2\end{bmatrix}}$.