QPaperGen

Exercise 2.2 (Inverse Trigonometric Functions)

Class: 12 | Subject: Math | Topic: NCERT book

 1. Prove $3{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right),x \in \left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]$ 
 
 Ans: To Prove $3{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$, where $x \in \left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]$ Let $x = \sin \theta .$ Then, ${\sin ^{ - 1}}x = \theta $. We have given that, R.H.S ${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right) = {\sin ^{ - 1}}\left( {3\sin \theta  - 4{{\sin }^3}\theta } \right)$ $ = {\sin ^{ - 1}}(\sin 3\theta )$ $ = 3\theta $ $ = 3{\sin ^{ - 1}}x = L.H.S$ Hence proved. 2. Prove $3{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right),x \in \left[ {\dfrac{1}{2},1} \right]$ 
 
 Ans: To Prove $3{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right),x \in \left[ {\dfrac{1}{2},1} \right]$ Let $x = \cos \theta $. Then, ${\cos ^{ - 1}}x = \theta $ We have given that, R.H S =${\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)$ $ = {\cos ^{ - 1}}\left( {4{{\cos }^3}\theta  - 3\cos \theta } \right)$ $ = {\cos ^{ - 1}}(\cos 3\theta )$ $ = 3\theta $ $ = 3{\cos ^{ - 1}}x = L.H.S$ Hence proved.

3. Write the function in the simplest form: ${\tan ^{ - 1}}\dfrac{{\sqrt {1 + {x^2}}  - 1}}{x},x \ne 0$ 
 
 Ans: ${\tan ^{ - 1}}\dfrac{{\sqrt {1 + {x^2}}  - 1}}{x}$ By putting $x = \tan \theta  \Rightarrow \theta  = {\tan ^{ - 1}}x$ $\therefore {\tan ^{ - 1}}\dfrac{{\sqrt {1 + {x^2}}  - 1}}{x} = {\tan ^{ - 1}}\dfrac{{\sqrt {1 + {{\tan }^2}\theta }  - 1}}{{\tan \theta }}$ $ = {\tan ^{ - 1}}\left( {\dfrac{{\sec \theta  - 1}}{{\tan \theta }}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 - \cos \theta }}{{\sin \theta }}} \right)$ ${\tan ^{ - 1}}\left( {\dfrac{{2{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}} \right)$ $ = {\tan ^{ - 1}}\left( {\tan \dfrac{\theta }{2}} \right) = \dfrac{\theta }{2} = \dfrac{1}{2}{\tan ^{ - 1}}x$ 4. Write the function in the simplest form: ${\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right),x < \pi $ 
 
 Ans: Given that,${\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right),x < \pi $ ${\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right)$ $ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{2{{\cos }^2}\dfrac{x}{2}}}} } \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)$ $ = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2}} \right)$ $ = \dfrac{x}{2}$ 5. Write the function in the simplest form: ${\tan ^{ - 1}}\left( {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} \right),0 < x < \pi $ 
 
 Ans: We have given that, ${\tan ^{ - 1}}\left( {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{1 - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}} \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)$ $ = {\tan ^{ - 1}}(1) - {\tan ^{ - 1}}(\tan x)\quad \left[ {\because \quad \dfrac{{ - y}}{{x - xy}} = {{\tan }^{ - 1}}x - {{\tan }^{ - 1}}y} \right]$ $ = \dfrac{\pi }{4} - x$ 6. Write the function in the simplest form: ${\tan ^{ - 1}}\dfrac{x}{{\sqrt {{a^2} - {x^2}} }},|x| < a$ 
 
 Ans: We have given that,${\tan ^{ - 1}}\dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$ Let’s consider, $x = a\sin \theta  \Rightarrow \dfrac{x}{a} = \sin \theta  \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right)$ $\therefore {\tan ^{ - 1}}\dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$ $ = {\tan ^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{\sqrt {{a^2} - {a^2}{{\sin }^2}\theta } }}} \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{a\sqrt {1 - {{\sin }^2}\theta } }}} \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{a\cos \theta }}} \right)$ $ = {\tan ^{ - 1}}(\tan \theta ) = \theta  = {\sin ^{ - 1}}\dfrac{x}{a}$ 7. Write the function in the simplest form: ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$ 
 
 Ans: Consider, ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right)$ Let’s consider, $x = a\tan \theta  \Rightarrow \dfrac{x}{a} = \tan \theta  \Rightarrow \theta  = {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)$ ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{3{a^2} \cdot a\tan \theta  - {a^3}{{\tan }^3}\theta }}{{{a^3} - 3a \cdot {a^2}{{\tan }^2}\theta }}} \right)$ $ = {\tan ^{ - 1}}\left( {\dfrac{{3{a^3}\tan \theta  - {a^3}{{\tan }^3}\theta }}{{{a^3} - 3{a^3}{{\tan }^2}\theta }}} \right)$ $ = {\tan ^{ - 1}}(\tan 3\theta )$ $ = 3\theta $ $ = 3{\tan ^{ - 1}}\dfrac{x}{a}$ 8. Find the value of ${\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right]$ 
 
 Ans: Let’s consider, ${\sin ^{ - 1}}\dfrac{1}{2} = x$ Then $\sin x = \dfrac{1}{2} = \sin \left( {\dfrac{\pi }{6}} \right)$ $\therefore {\sin ^{ - 1}}\dfrac{1}{2} = \dfrac{\pi }{6}$ $\therefore {\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right]$ $ = {\tan ^{ - 1}}\left[ {2\cos \left( {2 \times \dfrac{\pi }{6}} \right)} \right]$ $ = {\tan ^{ - 1}}\left[ {2\cos \dfrac{\pi }{3}} \right]$ $ = {\tan ^{ - 1}}\left[ {2 \times \dfrac{1}{2}} \right]$ $ = {\tan ^{ - 1}}1 = \dfrac{\pi }{4}$

9. Find the value of $\tan \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}} + {{\cos }^{ - 1}}\dfrac{{1 - {y^2}}}{{1 + {y^2}}}} \right],|x| < 1,y > 0$ and $xy < 1$ 
 
 Ans: Let consider, $x = \tan \theta $. Then, $\theta  = {\tan ^{ - 1}}x$. $\therefore {\sin ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}} = {\sin ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right)$ $ = {\sin ^{ - 1}}(\sin 2\theta )$ $ = 2\theta $ $ = 2{\tan ^{ - 1}}x$ Let’s assume, $y = \tan \theta .$ Then, $\theta  = {\tan ^{ - 1}}y$. $\therefore {\cos ^{ - 1}}\left( {\dfrac{{1 - {y^2}}}{{1 + {y^2}}}} \right)$ $ = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$ $ = {\cos ^{ - 1}}(\cos 2\theta )$ $ = 2\theta  = 2{\tan ^{ - 1}}y$ $\therefore \tan \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{{1 - {y^2}}}{{1 + {y^2}}}} \right)} \right]$ $ = \tan \dfrac{1}{2}\left[ {2{{\tan }^{ - 1}}x + 2{{\tan }^{ - 1}}y} \right]$ $\left[ {As,{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\dfrac{{x + y}}{{1 - xy}}} \right]$ $ = \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right]$ $ = \dfrac{{x + y}}{{1 - xy}}$

10. Find the values of ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)$ 
 
 Ans: Let’s consider, ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)$ As we know that ${\sin ^{ - 1}}(\sin x) = x$ If $x \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$, which is the principal value branch of ${\sin ^{ - 1}}x$. Here, $\dfrac{{2\pi }}{3} \notin \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$ Now, ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)$ can be written as: ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)$ $ = {\sin ^{ - 1}}\left[ {\sin \left( {\pi  - \dfrac{{2\pi }}{3}} \right)} \right]$ $ = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{3}} \right)$, where $\dfrac{\pi }{3} \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$ $\therefore {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right) = {\sin ^{ - 1}}\left[ {\sin \dfrac{\pi }{3}} \right] = \dfrac{\pi }{3}$ 11. Find the values of ${\tan ^{ - 1}}\left( {\tan \dfrac{{3\pi }}{4}} \right)$ 
 
 Ans: Let’s Consider, ${\tan ^{ - 1}}\left( {\tan \dfrac{{3\pi }}{4}} \right)$ As we know that ${\tan ^{ - 1}}(\tan x) = x$ If $x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$, which is the principal value branch of ${\tan ^{ - 1}}x$. Here, $\dfrac{{3\pi }}{4} \notin \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$. Now, ${\tan ^{ - 1}}\left( {\tan \dfrac{{3\pi }}{4}} \right)$ can be written as: ${\tan ^{ - 1}}\left( {\tan \dfrac{{3\pi }}{4}} \right) = {\tan ^{ - 1}}\left[ { - \tan \left( {\dfrac{{ - 3\pi }}{4}} \right)} \right] = {\tan ^{ - 1}}\left[ { - \tan \left( {\pi  - \dfrac{\pi }{4}} \right)} \right]$ ${\tan ^{ - 1}}\left( { - \tan \dfrac{\pi }{4}} \right) = {\tan ^{ - 1}}\left[ {\tan \left( {\dfrac{{ - \pi }}{4}} \right)} \right]$ where $ - \dfrac{\pi }{4} \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ $\therefore {\tan ^{ - 1}}\left( {\tan \dfrac{{3\pi }}{4}} \right) = {\tan ^{ - 1}}\left[ {\tan \left( {\dfrac{{ - \pi }}{4}} \right)} \right] = \dfrac{{ - \pi }}{4}$ 12. Find the values of $\tan \left( {{{\sin }^{ - 1}}\dfrac{3}{5} + {{\cot }^{ - 1}}\dfrac{3}{2}} \right)$ 
 
 Ans: Let’s consider, ${\sin ^{ - 1}}\dfrac{3}{5} = x$. Then, $\sin x = \dfrac{3}{5}$ $ \Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x}  = \dfrac{4}{5}$ $ \Rightarrow \sec x = \dfrac{5}{4}$ $\therefore \tan x = \sqrt {{{\sec }^2}x - 1}  = \sqrt {\dfrac{{25}}{{16}} - 1}  = \dfrac{3}{4}$ $\therefore x = {\tan ^{ - 1}}\dfrac{3}{4}$ $\therefore {\sin ^{ - 1}}\dfrac{3}{5} = {\tan ^{ - 1}}\dfrac{3}{4}\quad  \ldots (i)$ Therefore, $\tan \left( {{{\sin }^{ - 1}}\dfrac{3}{5} + {{\cot }^{ - 1}}\dfrac{3}{2}} \right)$ $ = \tan \left( {{{\tan }^{ - 1}}\dfrac{3}{4} + {{\tan }^{ - 1}}\dfrac{2}{3}} \right)\quad $ [Using (i) and (ii)] $ = \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{3}{4} + \dfrac{2}{3}}}{{1 - \dfrac{3}{4} \cdot \dfrac{2}{3}}}} \right)} \right]$ $\left[ {As,{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\dfrac{{x + y}}{{1 - xy}}} \right]$ $ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{9 + 8}}{{12 - 6}}} \right)$ $ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{17}}{6}} \right) = \dfrac{{17}}{6}$ 13. Find the values of ${\cos ^{ - 1}}\left( {\cos \dfrac{{7\pi }}{6}} \right)$ is equal to (A) $\dfrac{{7\pi }}{6}$ (B) $\dfrac{{5\pi }}{6}$ (C) $\dfrac{\pi }{3}$ (D) $\dfrac{\pi }{6}$ 
 
 Ans: We know that ${\cos ^{ - 1}}(\cos x) = x$ if $x \in [0,\pi ]$, which is the principal value branch of ${\cos ^{ - 1}}x$. Here, $\dfrac{{7\pi }}{6} \notin [0,\pi ]$. Now, ${\cos ^{ - 1}}\left( {\cos \dfrac{{7\pi }}{6}} \right)$ can be written as: ${\cos ^{ - 1}}\left( {\cos \dfrac{{7\pi }}{6}} \right) = {\cos ^{ - 1}}\left( {\cos \dfrac{{ - 7\pi }}{6}} \right) = {\cos ^{ - 1}}\left[ {\cos \left( {2\pi  - \dfrac{{7\pi }}{6}} \right)} \right]\quad [\because $ $ + x) = \cos x]$ $\therefore {\cos ^{ - 1}}\left( {\cos \dfrac{{7\pi }}{6}} \right) = {\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{6}} \right) = \dfrac{{5\pi }}{6}$ The correct 
 
 Answer is ${\text{B}}$. 14. Find the values of $\sin \left( {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right)$ is equal to (A) $\dfrac{1}{2}$ (B) $\dfrac{1}{3}$ (C) $\dfrac{1}{4}$ (D) 1 
 
 Ans: Let’s consider, ${\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) = x$. Then, $\sin x = \dfrac{{ - 1}}{2} =  - \sin \dfrac{\pi }{6} = \sin \left( {\dfrac{{ - \pi }}{6}} \right)$. As we know that the range of the principal value branch of ${\sin ^{ - 1}}$ is $\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$. ${\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) = \dfrac{\pi }{6}$ $\therefore \sin \left( {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)} \right) = \sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6}} \right) = \sin \left( {\dfrac{{3\pi }}{6}} \right) = \sin \left( {\dfrac{\pi }{2}} \right) = 1$ The correct 
 
 Answer is ${\text{D}}$. 15. $\tan ^{-1}(\sqrt{3})-\cot ^{-1}(-\sqrt{3})$ is equal to (A) $\pi$ (B) $-\dfrac{\pi}{2}$ (C) 0 (D) $2 \sqrt{3}$ 
 
 Ans: Suppose that, $A=\tan ^{-1}(\sqrt{3})-\cot ^{-1}(-\sqrt{3})$ As we know that, $\cot ^{-1}(-x)=\pi-\cot ^{-1}(x)$ So, $\cot ^{-1}(-\sqrt{3})=\pi-\cot ^{-1}(\sqrt{3})$ Put the value in the equation (i), $A=\tan ^{-1}(\sqrt{3})-\pi+\cot ^{-1}(\sqrt{3})$ As we know that, $\cot ^{-1} x=\dfrac{\pi}{2}-\tan ^{-1} x$ So, $\cot ^{-1}(\sqrt{3})=\dfrac{\pi}{2}-\tan ^{-1}(\sqrt{3})$ Put the value in the equation (ii), $A=\tan ^{-1}(\sqrt{3})-\pi+\dfrac{\pi}{2}-\tan ^{-1}(\sqrt{3}) $ $A=-\dfrac{\pi}{2}$ Hence, the correct option is B.