QPaperGen

Inverse Trigonometric Functions

Class: 12 | Subject: Math | Topic: Inverse Trigonometric Functions

Class 12: Inverse Trigonometry Master Kit

Inverse Trigonometry

Class 12 Math Complete Revision Kit
1. Concepts & Logic

The Golden Rule: Principal Value Branch

The inverse trigonometric functions are multivalued, but for functions to be defined, we restrict their domain and range. The restricted range is called the Principal Value Branch.

[Image of Unit Circle for Inverse Trigonometry]
Crucial Check: Always ensure your final answer $\theta$ lies strictly within the Principal Range defined below.
Function GroupRange (Principal Value)Memory Aid
$\sin^{-1}, \csc^{-1}, \tan^{-1}$$[-\frac{\pi}{2}, \frac{\pi}{2}]$ family1st & 4th Quadrant
$\cos^{-1}, \sec^{-1}, \cot^{-1}$$[0, \pi]$ family1st & 2nd Quadrant

Handling Negative Inputs

How to solve $\text{fn}^{-1}(-x)$? There are only two rules.

Type A: The "Direct" Group

The minus sign simply comes outside.

$\sin^{-1}(-x) = -\sin^{-1}x$
$\tan^{-1}(-x) = -\tan^{-1}x$
$\csc^{-1}(-x) = -\csc^{-1}x$

Type B: The "Pi-Minus" Group

Subtract the value from $\pi$.

$\cos^{-1}(-x) = \pi - \cos^{-1}x$
$\sec^{-1}(-x) = \pi - \sec^{-1}x$
$\cot^{-1}(-x) = \pi - \cot^{-1}x$

Calculus Substitutions

Use these substitutions to simplify complex inverse expressions in differentiation or integration.

Expression FormRecommended Substitution ($x=$)
$\sqrt{a^2 - x^2}$$a\sin\theta$ or $a\cos\theta$
$\sqrt{a^2 + x^2}$$a\tan\theta$ or $a\cot\theta$
$\sqrt{x^2 - a^2}$$a\sec\theta$ or $a\csc\theta$
$\sqrt{\frac{a-x}{a+x}}$ or $\sqrt{\frac{a+x}{a-x}}$$a\cos 2\theta$
2. Formula Sheet

1. Complete Domain & Range Table

Function ($y$)Domain ($x$)Range (Principal Value Branch)
$y = \sin^{-1}x$$[-1, 1]$$[-\frac{\pi}{2}, \frac{\pi}{2}]$
$y = \cos^{-1}x$$[-1, 1]$$[0, \pi]$
$y = \tan^{-1}x$$\mathbb{R}$$(-\frac{\pi}{2}, \frac{\pi}{2})$
$y = \cot^{-1}x$$\mathbb{R}$$(0, \pi)$
$y = \sec^{-1}x$$\mathbb{R} - (-1, 1)$$[0, \pi] - \{\frac{\pi}{2}\}$
$y = \csc^{-1}x$$\mathbb{R} - (-1, 1)$$[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$

2. Key Identities & Properties

A. Reciprocal Properties

$\sin^{-1}\frac{1}{x} = \csc^{-1}x$
$\cos^{-1}\frac{1}{x} = \sec^{-1}x$
$\tan^{-1}\frac{1}{x} = \cot^{-1}x \quad (x>0)$

B. Co-function Properties

$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$
$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$
$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$

C. Sum & Difference Formulas (Tan Inverse)

$$ \tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 $$ $$ \tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x-y}{1+xy}\right) \quad \text{if } xy > -1 $$

D. Conversion of $2\tan^{-1}x$

This is the "bridge" formula connecting tan inverse to sin and cos inverse.

$$ 2\tan^{-1}x = \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) $$

3. Triple Angle Formulas

$$ 3\sin^{-1}x = \sin^{-1}(3x - 4x^3) $$ $$ 3\cos^{-1}x = \cos^{-1}(4x^3 - 3x) $$ $$ 3\tan^{-1}x = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) $$
3. Solved Examples

Type 1: Basic Principal Values

1. Find the principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$
We know that $\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$.
Check: Does $\frac{\pi}{4}$ lie in $[-\frac{\pi}{2}, \frac{\pi}{2}]$? Yes.
Answer: $\frac{\pi}{4}$
2. Find the principal value of $\cot^{-1}(\sqrt{3})$
We know that $\cot(\frac{\pi}{6}) = \sqrt{3}$.
Check: Does $\frac{\pi}{6}$ lie in $(0, \pi)$? Yes.
Answer: $\frac{\pi}{6}$

Type 2: Negative Arguments (Most Important)

Remember: Sin/Tan/Csc output negative directly. Cos/Sec/Cot become $\pi - \theta$.

3. Find $\tan^{-1}(-1)$
Property: $\tan^{-1}(-x) = -\tan^{-1}x$
$\Rightarrow -\tan^{-1}(1)$
Since $\tan(\frac{\pi}{4}) = 1$, we get $-\frac{\pi}{4}$.
Answer: $-\frac{\pi}{4}$
4. Find $\cos^{-1}\left(-\frac{1}{2}\right)$
Property: $\cos^{-1}(-x) = \pi - \cos^{-1}x$
$\Rightarrow \pi - \cos^{-1}(\frac{1}{2})$
$\Rightarrow \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
Answer: $\frac{2\pi}{3}$
5. Find $\sec^{-1}\left(-\frac{2}{\sqrt{3}}\right)$
Property: $\sec^{-1}(-x) = \pi - \sec^{-1}x$
$\Rightarrow \pi - \sec^{-1}(\frac{2}{\sqrt{3}})$
$\Rightarrow \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
Answer: $\frac{5\pi}{6}$

Type 3: Complex Evaluation

6. Evaluate $\sin^{-1}\left(\sin \frac{2\pi}{3}\right)$
Warning $\frac{2\pi}{3}$ is outside the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$.
Convert: $\sin \frac{2\pi}{3} = \sin(\pi - \frac{\pi}{3}) = \sin \frac{\pi}{3}$.
Solve: $\sin^{-1}(\sin \frac{\pi}{3}) = \frac{\pi}{3}$.
Answer: $\frac{\pi}{3}$
7. Evaluate $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$
Part A: $\tan^{-1}(1) = \frac{\pi}{4}$
Part B: $\cos^{-1}(-\frac{1}{2}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
Part C: $\sin^{-1}(-\frac{1}{2}) = -\frac{\pi}{6}$
Combine: $\frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6} = \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12}$
Answer: $\frac{3\pi}{4}$
4. Visual Graphs

Interactive Graphs

Hover over the lines to see exact coordinate values. Note how the graphs are restricted to their principal branches.

$y = \sin^{-1}x$

$y = \cos^{-1}x$

$y = \tan^{-1}x$

$y = \cot^{-1}x$