Questions and Solutions
Question 1:
If \(f(x) = \frac{1}{x}\), then \(f(f(x)) =\)
Question 2:
The function \(f(x) = x^2 + 2x + 3\) is:
Question 3:
Let \(f: \mathbb{R} \to \mathbb{R}\) be defined by \(f(x) = x^2 - 1\). Then \(f^{-1}(f(2))\) is:
Topic: Relations and Functions
If \(f(x) = \frac{1}{x}\), then \(f(f(x)) =\)
The function \(f(x) = x^2 + 2x + 3\) is:
Let \(f: \mathbb{R} \to \mathbb{R}\) be defined by \(f(x) = x^2 - 1\). Then \(f^{-1}(f(2))\) is: