Question:
Let
\[
A = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : |\alpha - 1| \leq 4 \;\;\text{and}\;\; |\beta - 5| \leq 6\}
\]
and
\[
B = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R} : 16(\alpha - 2)^2 + 9(\beta - 6)^2 \leq 144\}.
\]
- A. \(A \subset B\)
- B. \(B \subset A\)
- C. Neither \(A \subset B\) nor \(B \subset A\)
- D. \(A \cup B = \{(x, y) : -4 \leq x \leq 4,\; -1 \leq y \leq 11\}\)