Question:
Consider the sets
\[
A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 25\}, \quad
B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + 9y^2 = 144\},
\]
\[
C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\}, \quad
D = A \cap B.
\]
The total number of one-one functions from the set \(D\) to the set \(C\) is:
- A. 15120
- B. 18290
- C. 17160
- D. 19320